Abstract

Transformation of phenol and cyclohexanol was studied in supercritical water (SCW) in a flow reactor at 300 bar, 500–750°С, and LHSV = 1.2–2.0 h–1. At 500–600°С the only products of phenol conversion are aromatic hydrocarbons—benzene, toluene, naphthalene and polycyclic aromatic hydrocarbons. Almost complete conversion of phenol is achieved at 750°С with selectivity to gaseous products (H2, CO2, CH4, C2H4, C2H6) not higher than 30%. A preliminary catalytic hydrogenation of phenol to cyclohexanol facilitates both overall reaction with SCW and the formation of gaseous products. At temperatures as low as 600°С gaseous products are formed from cyclohexanol, and its complete conversion is achieved at 700°С. In the latter case, the yield of the gaseous products reaches 70%, including 40% of C1–C2 hydr°Carbons. The differences in the rate of conversion in SCW and in selectivity to gaseous products between phenol and cyclohexanol at 500–750°С are associated with the stability of the aromatic ring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.