Abstract

The lateral distribution of integral and peripheral proteins, as well as lipids in the plasma membranes of mammalian cells is extremely heterogeneous. It is believed that various lipid-protein domains are formed in membranes. Domains enriched in sphingomyelin and cholesterol are called rafts. It is assumed that the distribution of proteins into rafts is largely related to the presence in their primary sequence of a specific amino acid region called the CRAC motif, which is responsible for cholesterol binding. In this work, the interaction of two peptides containing CRAC motifs in their structure with membranes of different compositions was studied by means of molecular dynamics. It has been shown that the average number of lipid molecules in contact with each peptide is proportional to the mole fraction of lipid in the membrane. The predominant interaction of peptides with cholesterol was not observed. In addition, cholesterol did not form long-lived contacts with any amino acid or amino acid sequence. We suppose that in some cases the predominant lateral distribution of peptides and proteins containing CRAC motifs into rafts may be due to amphipathicity of the CRAC motif rather than due to specific strong binding of cholesterol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.