Abstract
Panduratin A (Pa-A) is a prenylated cyclohexenyl chalcone isolated from the rhizomes of the medicinal and culinary plant Boesenbergia rotunda (L.) Mansf., commonly called fingerroots. Both an ethanolic plant extract and Pa-A have shown a marked antiviral activity against the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for the COVID-19 pandemic disease. Pa-A functions as a protease inhibitor inhibiting infection of human cells by the virus. We have modeled the interaction of Pa-A, and 26 panduratin analogues with the main protease (Mpro) of SARS-CoV-2 using molecular docking. The natural product 4-hydroxypanduratin showed a higher Mpro binding capacity than Pa-A and isopanduratin A. The interaction with MPro of all known panduratin derivatives (Pa-A to Pa-Y) have been compared, together with more than 60 reference products. Three compounds emerged as potential robust MPro binders: Pa-R, Pa-V, Pa-S, with a binding capacity significantly higher than 4-OH-Pa-A and Pa-A. The empirical energy of interaction (ΔE) calculated with the best compound in the panduratin series, Pa-R bound to Mpro, surpassed that measured with the top reference protease inhibitors such a ruprintrivir, lufotrelvir, and glecaprevir. Structure–binding relationships are discussed. Compounds with a flavanone moiety (PA-R/S) are the best binders, better than those with a chromene unit (Pa-F/G). The extended molecules (such as Pa-V) exhibit good Mpro binding, but the dimeric compound Pa-Y is too long and protrudes outside the binding cavity. The work provides novel ideas to guide the design of new molecules interacting with Mpro. Communicated by Ramaswamy H. Sarma
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.