Abstract
This contribution presents a computational account of strong and exothermic interaction of atomic and molecular oxygen with the α(001)B12 surface of boron. Physisorbed oxygen interacts weakly with the surface, but the dissociative chemisorption entails considerable exothermicity in the range of 2.47–3.45 eV, depending on the adsorbed sites of the two oxygen atoms. Nonetheless, rupture of dioxygen on the surface involves a sizable intrinsic reaction barrier of 3.40 eV (at 0 K). Such high amount of energy clearly explains the chemical inertness (i.e., the lack of oxidation) of boron at room temperature. However, elevated temperature encountered in real applications of boron, such as cutting machinery, overcomes the high-energy barrier for the dissociative adsorption of molecular oxygen (3.40 eV). A stability T–P phase diagram reveals the spontaneous nature of the substitutional O/α(001)B12 adsorption modes that lead to the formation of diboron trioxide (B2O3) at temperatures and pressure pertinent to practi...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.