Abstract

The binding of an antitumour drug with bisquarternary ammonium heterocyclic structure, NSC-101327, to nucleic acids has been examined by using ultraviolet absorption and CD measurements. Like the minor groove-binding oligopeptides, netropsin and distamycin A, the optically inactive chromophoric system of NSC-101327 shows induced Cotton effects in the CD spectra of complexes with various DNAs, RNA and single-stranded polynucleotides. This property directly reflects interaction of NSC-101327 with different types of nucleic acids at moderate ionic strength, which contrasts with previous findings of a higher selective binding of netropsin to B-DNA. However, an efficient interactin of NSC-101327 with dA·dT basepair sequences is demonstrated by a large melting temperature increase of dA·dT-rich DNAs. NSC-101327 also reacts with dG·dC base pairs of B-DNA and forms a complex with Z-DNA of poly(br 8dG-dC)·poly(br 8DG-dC). The affinity of NSC-101327 to poly(dG-dC)·poly(dG-dC) is, however, lower, and the CD spectral binding effect depends on the ionic strength. The CD results of the complex with poly(dA-dT)·poly(dA-dT) suggests at least two binding modes, in accordance with previous conclusions. This is indicated by a clear-cut initial increase of the CD signal and a subsequent large decrease to negative CD signals. Competition experiments with netropsin suggest that binding of NSC-101327 occurs preferentially in the minor groove without intercalation. NSC-101327 also tends to interact with lower binding affinity to dG-dC pairs in B-DNA, with rA·rU pairs of RNA and with single-stranded polynucleotides. Thus our results suggest that NSC-101327 represents a DNA groove-binding ligand of lower basepair specificity and lower conformational selectivity compared to the B-specific netropsin probe.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.