Abstract

Molecular interactions between novel monomethine cyanine dyes and non-fibrilar and fibrilar proteins were assessed using fluorescence spectroscopy and molecular docking techniques. To this end, the fluorescence spectral properties of dyes have been explored in the buffer solution and in the presence of insulin and lysozyme in the native and amyloid states. It was observed that association of monomethines with the native and fibrillar proteins was accompanied with a significant enhancement of the fluorophore fluorescence, being more pronounced in the presence of aggregated insulin and lysozyme. The quantitative information about the dye-protein binding was obtained through approximating the experimental dependencies of the fluorescence intensity increase vs protein concentration by the Langmuir model. Analysis of the spectral properties and the binding characteristics of monomethines in the presence of the fibrillar insulin and lysozyme showed that the introduction of chloro- and fluorine-substitutients to the oxazole yellow derivatives, as well as the long aliphatic substitution on the nitrogen atom of the benzazole chromophore of YO-dyes had a negative impact on the dye amyloid specificity. Molecular docking studies showed that monomethines tend to form the most stable complexes with the B-chain residues Val 17, Leu17, Ala 14, Phe1, Gln 4 and Leu 6 and the A-chain residue Leu 13, Tyr 14, Glu 17 of non-fibrilar insulin and interact with the deep cleft of native lysozyme lined with both hydrophobic (Ile98, Ile 58, Thr108, Thr 62 and Thr 63 residues) and negatively (Asp101, Asp 107) charged residues. The wet surface groove Gln15_Glu17 and groove G2-L4/S8-W10 were found as the most energetically favorable binding sites for examined monomethine dyes in the presence of the insulin and lysozyme fibrils, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.