Abstract

Clinical manifestations of malaria primarily result from proliferation of the parasite within the hosts' erythrocytes. The malaria parasite digests hemoglobin within its digestive vacuole through a sequential metabolic process involving multiple proteases. The activities of these proteases could lead to the production of ROS which could lead to the death of the parasites due to the destruction of their membrane. The action of SDS on hemoglobins can be likened to the way malarial proteases destabilizes host hemoglobin. Hence, the study was designed to determine the binding parameters of SDS and H2O2 for normal, sickle trait carrier and sickle hemoglobins at pH 5.0 and 7.2 using UV-VIS Titration Spectrophotometry. Hb-SDS interactions were significantly different at pH 5.0 but were not at pH 7.2. Also, Hb-H2O2 interactions were statistically different at pH 5.0 and 7.2. The interactions suggest that HbA and HbS are easily destabilized than HbAS and that HbAS has more affinity for H2O2. These suggest a production of more ferryl intermediates or hydroxyl radicals. All these interactions may hinder the development of the malaria parasite at the intraerythrocytic stage and could likely account for a significant proportion of the mechanism that favours the resistance to malaria by individuals with HbAS.

Highlights

  • Malaria is one of the most important infectious disease problems of humans, in developing countries

  • This is because during the intraerythrocytic development and proliferation, the parasites ingest more than 75% of the hosts’ hemoglobin and digest them within the digestive vacuole—an acidic organelles with estimated pH of 5.0–5.4— through a sequential metabolic process involving multiple proteases [2, 3], and action of sodium dodecylsulphate (SDS) on hemoglobins can be likened to the way proteases secreted by malaria parasites destabilizes host hemoglobin for their homeostasis

  • Action of SDS on hemoglobins can be likened to the way proteases secreted by malaria parasites destabilizes host hemoglobin for their homeostasis, the result suggests that malaria parasite proteases destabilize HbA and HbS than HbAS at acidic pH

Read more

Summary

Introduction

Malaria is one of the most important infectious disease problems of humans, in developing countries. Clinical manifestations of malaria primarily result from proliferation of the parasite within the hosts’ erythrocytes. During this process, hemoglobin is utilized as the predominant source of nutrition. Hemoglobin is utilized as the predominant source of nutrition This is because during the intraerythrocytic development and proliferation, the parasites ingest more than 75% of the hosts’ hemoglobin and digest them within the digestive vacuole—an acidic organelles with estimated pH of 5.0–5.4— through a sequential metabolic process involving multiple proteases [2, 3], and action of sodium dodecylsulphate (SDS) on hemoglobins can be likened to the way proteases secreted by malaria parasites destabilizes host hemoglobin for their homeostasis. A clear understanding of the molecular mechanisms involved in erythrocyte invasion and proliferation of the parasite could lead to the development of novel approaches to inhibit invasion, limit blood-stage parasite growth, and protect against malaria [6]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call