Abstract
The mechanism of interaction of the non-steroidal anti-inflammatory drugs, etoricoxib and parecoxib sodium, with human serum albumin (HSA) was studied using fluorescence spectroscopy. There was only one class of binding site with association constants of the order of 10(4). Thermodynamic parameters suggest that van der Waals and hydrogen bonding interactions in the case of etoricoxib, and electrostatic and hydrogen bonding interactions in the case of parecoxib sodium, are predominantly involved in the binding. Studies in the presence of the hydrophobic probe, 1-anilinonaphthalene-8-sulfonate (ANS), showed that hydrophobic interactions are not involved in the binding of these drugs to HSA. Displacement studies using the site-specific probe, dansylsarcosine piperidinium salt (DSS), showed that the drugs are bound at site II on the HSA molecule. However, etoricoxib and parecoxib sodium are bound at different regions within site II. Increase of pH and the presence of salt caused significant changes in the association constants and the concentration of free pharmacologically active drug. Stern-Volmer analysis of the binding data indicated that the tryptophan residues of albumin are not fully accessible to anionic parecoxib sodium and a predominantly static quenching mechanism is operative in each case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.