Abstract

We have recently reported the presence of an electroneutral (Na + K + 2 Cl) cotransport mechanism that is bumetanide-sensitive and maintains Cli above its electrochemical equilibrium in cultured chick heart cells. In steady state, (Na + K + 2 Cl) cotransport is inwardly directed and so contributes to the Na influx that must be counterbalanced by the activity of the Na/K pump to maintain Nai homeostasis. We now show that manipulating (Na + K + 2 Cl) cotransport by restoring Clo to a Cl-free solution indirectly influences Na/K pump activity because the bumetanide-sensitive recovery of aiNa to its control level and the accompanying hyperpolarization could be blocked by 10(-4)M ouabain. In another protocol, when the Na/K pump was reactivated by restoring Ko (from 0.5 mM to 5.4 mM) and removing ouabain, the recovery of aNa was attenuated by 10(-4)M bumetanide. The relatively slow rate of ouabain dissociation coupled with the activation of Na influx by (Na + K + 2 Cl) cotransport clearly establishes the interaction of these transport mechanisms in regulating Nai. Although (Na + K + 2 Cl) cotransport is electroneutral, secondary consequences of its activity can indirectly affect the electrophysiological properties of cardiac cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.