Abstract

Multiple circular inclusions exists widely in natural media, engineering materials and modern municipal construction, and defects are usually found around the inclusions. When composite material with multiple circular inclusions and a crack is impacted by dynamic load, the scattering field will be produced. The problem of scattering of SH waves by multiple circular inclusions and a linear crack is one of the important and interesting questions in mechanical engineering and civil engineering for the latest decade. It is hard to obtain analytic solutions except for several simple conditions. In this paper, the method of Green’s function is used to investigate the problem of dynamic stress concentration of multiple circular inclusions and a linear crack for incident SH wave. The train of thoughts for this problem is that: Firstly, a Green’s function is constructed for the problem, which is a fundamental solution of displacement field for an elastic space possessing multiple circular inclusions while bearing out-of-plane harmonic line source force at any point: Secondly, in terms of the solution of SH-wave’s scattering by an elastic space with multiple circular inclusions, anti-plane stresses which are the same in quantity but opposite in direction to those mentioned before, are loaded at the region where the crack is in existent actually; Finally, the expressions of the displacement and stress are given when multiple circular inclusions and a linear crack exist at the same time. Then, by using the expression, an example is provided to show the effect of multiple circular inclusions and crack on the dynamic stress concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.