Abstract

The broad-spectrum insecticide rotenone, an inhibitor of complex I of the mitochondrial electron transport chain (ETC), gives rise to oxidative stress and bioenergetic failure. Pesticides including rotenone have been implicated in human neurodegenerative diseases, including Parkinson's disease. Another intensively investigated hypothesis of neurodegenerative disease involves the toxic action of the excitatory neurotransmitter glutamate. In the present study, we determined whether concomitant exposure of rotenone plus tetraethylammonium chloride (TEA) or the specific glutamate receptor agonists N-methyl-D-aspartate (NMDA) or alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) would cause greater cell death in organotypic hippocampal slice cultures than when given separately. Low, sublethal rotenone (100 nM), TEA (0.5-2.0 mM), NMDA (1.0-10 microM), and AMPA (1.0-10 microM) alone resulted in little cell death as determined by propidium iodide fluorescence. However, cell death was significantly to dramatically potentiated when the hippocampal slices were coincubated with comparable concentrations of rotenone plus TEA, NMDA, or AMPA. Similarly, in the presence of 10 microM NMDA, ETC inhibitors blocking other mitochondrial complexes also potentiated cell death. Immunohistochemical analysis using glial fibrillary acidic protein antibody determined that the cell death was preferentially neuronal. These results demonstrate that two different classes of toxicants can interact, resulting in potentiation of neurotoxicity, and further suggest that a combinatorial therapeutic approach may be required to ameliorate the potentiated cell death.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call