Abstract

Mitochondrial heat shock protein 70 (mt-hsp70) functions as a molecular chaperone in mitochondrial biogenesis. The chaperone in co-operation with its co-proteins acts as a translocation motor pulling the mitochondrial precursor into the matrix. Mt-hsp70s are highly conserved when compared to the bacterial hsp70 homologue, DnaK. Here we have used DnaK as a model to study the interaction of mitochondrial presequences with mt-hsp70 applying a DnaK-binding algorithm, computer modeling and biochemical investigations. DnaK-binding motifs have been analysed on all available, statistically relevant mitochondrial presequences found in the OWL database by running the algorithm. A total of 87 % of mammalian, 97 % of plant, 71 % of yeast and 100 % of Neurospora crassa presequences had at least one DnaK binding site. Based on the prediction, five 13-mer presequence peptides have been synthesized and their inhibitory effect on the molecular chaperone (DnaK/DnaJ/GrpE) assisted refolding of luciferase has been analysed. The peptide with the highest predicted binding likelihood showed the strongest inhibitory effect, whereas the peptide with no predicted binding capacity showed no inhibitory effect. A 3D structure of the pea mt-hsp70 has been constructed using homology modeling. The binding affinities of the 13-mer presequence peptides and additional control peptides to DnaK and pea mt-hsp70 have been theoretically estimated by calculating the buried hydrophobic surface area of the peptides docked to DnaK and to the mt-hsp70 structural model. These results suggest that mitochondrial presequences interact with the mt-hsp70 during or after mitochondrial protein import.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call