Abstract

Microwave energy deposition is a novel method for flow control in high-speed flows. Experiments have demonstrated its capability for beneficial flowfield modification in supersonic flow including, for example, drag reduction for blunt bodies. A fully three-dimensional, time-accurate gas dynamic code has been developed for simulating microwave energy deposition in air and the interaction of the microwave-generated plasma with the supersonic flow past a blunt body. The thermochemistry model includes 23 species and 238 reactions. The code is applied to the simulation of microwave energy deposition in supersonic flow past a hemisphere cylinder. The computed centerline surface pressure is compared with the experiment. The interaction of the microwave-generated plasma with the flowfield structure is examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.