Abstract

Menthol is a widely used penetration enhancer in clinical medicine due to its high efficiency and relative safety. Although there are many studies focused on the penetration-enhancing activity of menthol, the details of molecular mechanism are rarely involved in the discussion. In this study, we present a series of coarse-grained molecular dynamics simulations to investigate the interaction of menthol with a mixed-lipid bilayer model consisting of ceramides, cholesterol and free fatty acids in a 2:2:1 molar ratio. Taking both the concentration of menthol and temperature into consideration, it was found that a rise in temperature and concentration within a specific range (1–20%) could improve the penetration-enhancing property of menthol and the floppiness of the bilayer. However, at high concentrations (30% and more), menthol completely mixed with the lipids and the membrane can no longer maintain a bilayer structure. Our results elucidates some of the molecular basis for menthol’s penetration enhancing effects and may provide some assistance for the development and applications of menthol as a penetration enhancer. Furthermore, we establish a method to investigate the penetration enhancement mechanism of traditional Chinese medicine using the mixed-lipid bilayer model of stratum corneum by molecular dynamics simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.