Abstract

Research purpose: The low patency rate (less than 50% at a 5-years follow-up) of commercial vascular grafts is strongly associated with compliance mismatch between graft und native artery. To address this deficit, we investigated the influence of the material and structural elasticity on the compliance behavior of small caliber vascular graft gaining for a stress-strain behavior adapted to the native vessel. Material & Methods: By combining different thermoplastic polycarbonate urethanes (TPU) fibers with different elasticity and non-elastic polyvinylidene fluoride (PVDF) fibers in different warp knitted tubular textile structures, we incorporate material and structural elasticity in a vascular graft (I.D. < 6 mm). The evaluation of the tubular fabrics is performed by determining the compliance properties in a mean pressure range between 20 and 120 mmHg by tensile testing. Results: We identified the draw ration of the TPU fiber production, the stitch course density of the fabric and the thread tension of the TPU yarn during the warp knitting process as statistically highly significant effects ( p < .005) on the compliance. With an adapted setting of those parameters, we were able to improve the compliance of the textile vascular grafts over the entire physiological pressure range (20–120 mmHg) by 400–630 % compared to current clinical ePTFE (expanded polytetrafluoroethylene) grafts towards native vessels. Conclusion: By combining material and structural elasticity in a warp knitted textile structure, we were able to biomimic the compliance towards physiological properties. Our approach can be seen as blueprint to adapt elasticity properties in other implant applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call