Abstract

The tools of normal forms and recurrence are used to analyze the interaction of low and higher order resonances in Hamiltonian systems. The resonance zones where the short-periodic solutions of the low order resonances exist are characterized by small variations of the corresponding actions that match the variations of the higher order resonance; this yields cases of embedded double resonance. The resulting interaction produces periodic solutions that in some cases destabilize a resonance zone. Applications are given to the three dof [Formula: see text] resonance and to periodic FPU-chains producing unexpected nonlinear stability results and quasi-trapping phenomena.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call