Abstract

Interactions and breakup processes of 1.50-mm-diameter ethyl alcohol droplets and 5.14-mm-diameter water bubbles with planar shock waves were observed using double-exposure holographic interferometry. Experiments were conducted in a 60 mm × 150 mm cross-sectional shock tube for shock Mach number 1.56 in air. The Weber numbers of droplets and liquid bubbles were 5.6 × 103 and 2.9 × 103, respectively, while the corresonding Reynolds numbers were 4.2 × 10 and 1.5 × 105. It is shown that the resulting holographic interferogram can eliminate the effect of the mists produced by the breakup of the droplets and clearly show the structure of a disintegrating droplet and its wake. This observation was impossible by conventional optical flow visualization. It is demonstrated that the time variation of the diameter of a breaking droplet measured by conventional optical techniques has been overestimated by up to 35 percent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.