Abstract

We report the modeling of the interaction of differently self-associated lipid-free apoA-I with cholesterol monomer and tail-to-tail (TT) or face-to-face (FF) cholesterol dimer. Cholesterol dimerization is exploited to reconcile the existing experimental data on cholesterol binding to apoA-I with extremely low critical micelle concentration of cholesterol. Two crystal structures of 1–43 N-truncated apolipoprotein Δ(1-43)A-I tetramer (PDB ID: 1AV1, structure B), 185–243 C-truncated apolipoprotein Δ(185-243)A-I dimer (PDB ID: 3R2P, structure M) were analyzed. Cholesterol monomers bind to multiple binding sites in apoA-I monomer, dimer and tetramer with low, moderate and high energy (−10 to −28 kJ/mol with Schrödinger package), still insufficient to overcome the thermodynamic restriction by cholesterol micellization (−52.8 kJ/mol). The binding sites partially coincide with the putative cholesterol-binding motifs. However, apoA-I monomer and dimer existing in structure B, that contain nonoverlapping and non-interacting pairs of binding sites with high affinity for TT and FF cholesterol dimers, can bind in common 14 cholesterol molecules that correspond to existing values. ApoA-I monomer and dimer in structure M can bind in common 6 cholesterol molecules. The values of respective total energy of cholesterol binding up to 64.5 and 67.0 kJ/mol for both B and M structures exceed the free energy of cholesterol micellization. We hypothesize that cholesterol dimers may simultaneously interact with extracellular monomer and dimer of lipid-free apoA-I, that accumulate at acid pH in atheroma. The thermodynamically allowed apolipoprotein-cholesterol interaction outside the macrophage may represent a new mechanism of cholesterol transport by apoA-I from atheroma, in addition to ABCA1-mediated cholesterol efflux.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call