Abstract

We consider the near-resonant interaction between a single atom and a focused light mode, where the single atom localized at the focus of a lens can scatter a significant fraction of light. Complementary to previous experiments on extinction and phase shift effects of a single atom, here we report on the measurement of coherently backscattered light. The strength of the observed effect suggests combining strong focusing with a cavity to further enhance the field at the location of the atom. This could make scaling up to a network of several atom + cavity nodes more realistic due to significant technical simplification of the atom–light interface. We consider theoretically a nearly concentric cavity, which has a strongly focused optical mode. Simple estimates show that in such a case one can expect a significant single photon Rabi frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call