Abstract

We have used hydroxyapatite (HA) chromatography and S1 nuclease hydrolysis to study the modification in the secondary structure of DNA caused by certain intercalating and non-intercalating ligands. The principal conclusions of HA experiments were as follows: (1) when native DNA, complexed with drugs believed to bind to DNA by intercalation (ethidium bromide, acridine orange, actinomycin D and acriflavin), is chromatographed on HA a lower affinity of DNA for HA is observed; also, the DNA elutes from HA columns as a drug-DNA complex; (ii) ligands that are known to interact with DNA by surface interactions do not show these effects; (iii) it may be possible to quantitate the binding of the intercalating drug to DNA and to determine its degree of binding by HA chromatography. Possibly, intercalation causes a change in the configuration of the sugarphosphate backbone of DNA, resulting in an altered steric orientation or 'burial' of phosphate groups with reduced availability for surface interactions with HA. S1 nuclease was used to determine the thermal melting profiles of DNA complexed with ethidium bromide and acridine orange. The melting profile in both cases was found to be biphasic with considerably reduced denaturation even at 95 degrees C. This is accounted for by the property of intercalating agents of stabilizing the secondary structure of DNA and the reported preference in binding to G-C base pairs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call