Abstract

CR2 is a component of a signal transduction complex on B lymphocytes that augments B cell responses to Ag. We have quantitatively assessed binding by the two isotypic forms of CR2 for two of its ligands, the polymerized iC3b (p(iC3b)) fragment of C3, and gp350/220, the EBV membrane protein. The recombinant 15-SCR or 16-SCR forms of CR2 bound p(iC3b) with identical affinities. Full binding activity of CR2 for p(iC3b) was observed with a chimera comprised of SCR-1 and -2 of CR2 fused to SCR-17 through -30 of CR1. Therefore, the alternatively spliced SCR-10a has no role in binding p(iC3b), and the binding activity of wild type receptor for iC3b can be reconstituted with SCR-1 and -2 of CR2. The binding affinities of the two isoforms of CR2 for soluble gp350/220 were also similar. Additional sites in the C3c region of C3 have been postulated also to interact with CR2. However, monomeric iC3b and C3d were equally effective in inhibiting the binding of p(iC3b) to CR2, indicating that the C3c region of iC3b does not contribute to the interaction of iC3b with CR2. Finally, the relative abilities of C3b and iC3b to bind to CR1 and CR2 were compared. The conversion of C3b to iC3b generated a ligand with an approximate 100-fold decrease in affinity for CR1 and a 10-fold increased affinity for CR2, resulting in a 1000-fold greater likelihood for binding to the latter receptor that may then promote B cell activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call