Abstract

The paper presents the results of both ab initio and thermodynamic analysis of vacancy and divacancy formation and hydrogen interaction with them in alpha (bcc) iron. Ab initio calculations were performed by DFT method using LAPW in WIEN2k package. Monovacancy formation energy was found to be 2.15 eV and divacancy binding energy 0.22 ± 0.01 eV. Equlibrium fraction of vacancies bound into divacancies is of the order of 10–5 even at the highest temperatures close to bcc → fcc transformation point. Hydrogen has a strong interaction with monovacancies (vacancy-hydrogen binding energy decreasing from 0.60 to 0.31 eV for the first–fifth H atom inside a single vacancy) but has only a small effect on divacancy formation energy that is equal to 0.28, 0.19 and 0.17 for the case of joining of VH + V, VH + VH and VH2 + VH2, respectively. This means that the presence of hydrogen cannot significantly increase the equilibrium concentration of divacancies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call