Abstract

Uptake of xenobiotics by hepatocytes is mediated by specific proteins, including organic anion transporting polypeptides (OATPs), residing on the basolateral (sinusoidal) plasma membrane. Many of the OATPs have PDZ consensus binding sites, determined by their C-terminal 4 amino acids, while others do not. Mouse and rat OATP1A1 are associated with PDZK1, which is necessary for their trafficking to the plasma membrane. humanOATP1B1 (hOATP1B1) is a major drug transporter in human liver. Although localized to the plasma membrane, it was thought to lack a PDZ consensus motif, suggesting that the trafficking paradigm for murine OATPs is not applicable to human liver. The aim of the present study was to determine whether hOATP1B1 is a ligand for hPDZK1. hOATP1B1 immunoprecipitates with hPDZK1 following co-expression in 293T cells as well as in normal human liver. Co-expression with each of the 4 PDZ domains revealed interaction with domain 1 only. A truncated version of hOATP1B1 that lacks its terminal 4 amino acid PDZ binding motif as well as hOATP1B3, which does not contain a PDZ binding consensus motif, failed to interact with hPDZK1. Immunofluorescence microscopy of hOATP1B1 in stably transfected HeLa cells that endogenously express hPDZK1 showed that it distributes predominantly along the plasma membrane whereas hOATP1B1 lacking its terminal 4 amino acids distributes primarily intracellularly with little plasma membrane localization. Similar to findings in rats and mice, human OATP1B1 is a ligand for PDZK1 and requires interaction with PDZK1 for optimal trafficking to the hepatocyte plasma membrane. SIGNIFICANCE: Previous studies suggested that OATP1B1, a major xenobiotic transporter in human liver, does not have a PDZ binding consensus motif and does not follow the paradigm for subcellular trafficking and function that was established for OATP1A1 in murine liver. We now demonstrated that OATP1B1 but not OATP1B3 has a PDZ binding consensus motif that mediates binding to PDZK1 and is required for its trafficking to the plasma membrane. Such interaction could be an important previously unrecognized modulator of transport function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call