Abstract

The interaction of high-power subnanosecond laser pulses with low-density targets of cellulose triacetate polymer is considered. An Nd-glass laser setup provides a focal spot intensity of over 1014 W cm−2. An investigation is made of absorption of laser radiation, laser-to-X-ray energy conversion, spectra of ions emitted from the plasma, transmission of laser radiation through the target and plasma, as well as volume heating of the target material. It is experimentally determined that the laser energy conversion efficiency to X-rays with photon energies of a few Kiloelectronvolts decreases with increasing target material density. With the use of targets of density 10 mg cm−3 this efficiency is two times lower in comparison to 2 mg cm−3 density targets. The duration and amplitude of laser pulses transmitted through the target decreases with increasing column target density (the product of target material density and its thickness). The spectra of ions emitted from low-density target plasmas are recorded using ion collectors positioned at different angles relative to the direction of laser beam propagation as well as a high-resolution Thomson mass spectrometer. The ion flux and ion energies are found to increase with increasing target material density. The peak of the ion energy spectrum is shifted towards higher energies with increasing laser radiation intensity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.