Abstract

This work demonstrates an optofluidic system, where dielectrophoretically controlled suspended nanoparticles are used to manipulate the properties of an optical waveguide. This optofluidic device is composed of a multimode polymeric rib waveguide and a microfluidic channel as its upper cladding. This channel integrates dielectrophoretic (DEP) microelectrodes and is infiltrated with suspended silica and tungsten trioxide nanoparticles. By applying electrical signals with various intensities and frequencies to the DEP microelectrodes, the nanoparticles can be concentrated close to the waveguide surface significantly altering the optical properties in this region. Depending on the particle refractive indices, concentrations, positions and dimensions, the light remains confined or is scattered into the surrounding media in the microfluidic channel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.