Abstract

Recent reports have suggested that a major proportion of [3H]kainate binding in goldfish brain is to a novel form of G-protein-linked glutamate receptor. Here we confirm that guanine nucleotides decrease [3H]kainate binding in goldfish brain membranes, but that binding is also reduced to a similar extent under conditions where G-protein modulation should be minimised. Inclusion of GTP gamma S resulted in an approximately twofold decrease in the affinity of [3H]kainate binding and a 50% reduction in the apparent Bmax values in both Mg2+/Na+ and Mg2+/Na(+)-free buffer when assayed at 0 degrees C. The pharmacology of [3H]kainate binding is similar to that of well-characterised ionotropic kainate receptors but unlike that of known metabotropic glutamate receptors, with neither 1S,3R-amino-1,3-cyclopentanedicarboxylic acid (1S,3R-ACPD) nor ibotenic acid being effective competitors. The molecular mass of the [3H]kainate binding protein, as determined by radiation inactivation, was 40 kDa, similar to the subunit sizes of other lower vertebrate kainate binding proteins that are believed to comprise ligand-gated ion channels. Furthermore, GTP gamma S also inhibited the binding of the non-NMDA receptor-selective antagonist 6-[3H]cyano-7-nitroquinoxaline-2,3-dione. These data strongly suggest that the regulatory interaction between guanine nucleotides and [3H]kainate and 6-[3H]cyano-7-nitroquinoxaline-2,3-dione binding is complex and involves competition at the agonist/antagonist binding site in addition to any G-protein-mediated modulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.