Abstract

Human granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL-3) are cytokines active in both normal and abnormal hemopoiesis, inflammation, and immunity. Their biological activity is mediated via receptors that comprise a ligand-specific alpha chain and a beta chain that is common to the GM-CSF, IL-3, and IL-5 receptors. To understand the mechanism of action of GM-CSF and IL-3 in both normal and pathological conditions, we are seeking to define the structural elements required for ligand/receptor and receptor/receptor contact and their role in cellular activation. To this end we have identified a conserved motif in the first helix of GM-CSF, Glu21 that is critical for high affinity binding and biological activity. Charge-reversal mutagenesis of this residue generates a GM-CSF analogue that is devoid of biological activity and can antagonize the activity of wild-type GM-CSF. This probably results from the selective deficiency in interaction with the beta chain of the receptor and suggests that similar antagonists for IL-3 and IL-5 are also feasible. Complementary mutagenesis studies on the receptor beta chain have identified the putative B'-C' loop in the membrane-proximal domain as being critical for the high affinity binding of GM-CSF but not IL-3. Characterization of the specificity of sites of interaction between the ligands and receptors may permit the design of specific or genetic antagonists that may have important therapeutic implications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call