Abstract

Amino acids are important nitrogen-containing compounds and organic carbon components that exist widely in the atmosphere. The formation of atmospheric aerosols is affected by their interactions with amides. The dimers formed by glutamic acid (Glu) or protonated glutamic acid (Glu+) with three kinds of amide molecules (formamide FA, acetamide AA, urea U) and the hydrated clusters formed by Glu or Glu+, U molecules along with one to six water molecules were systematically studied at the M06-2X/6-311++G(3df,3pd) level. U is predicted to form a more stable structure with Glu/Glu+ than FA and AA by thermodynamics. If the concentration ratio of FA to U is less than 104, U will play a critical role in NPF. The degree of hydration in Glu+-mU-nW is higher than that of Glu-mU-nW (m = 0, 1; n = 0-6) clusters. Notably, Glu contributes more to the Rayleigh scattering properties than glutaric acid and sulfuric acid, and thus may lead to the destruction of atmospheric visibility. This study is helpful to better understand the properties of organic aerosols containing amino acids or amides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call