Abstract

The organ-specific critical nitrogen (Nc) dilution curves are widely thought to represent a new approach for crop nitrogen (N) nutrition diagnosis, N management, and crop modeling. The Nc dilution curve can be described by a power function (Nc = A1·W-A2), while parameters A1 and A2 control the starting point and slope. This study aimed to investigate the uncertainty and drivers of organ-specific curves under different conditions. By using hierarchical Bayesian theory, parameters A1 and A2 of the organ-specific Nc dilution curves for wheat were derived and evaluated under 14 different genotype × environment × management (G × E × M) N fertilizer experiments. Our results show that parameters A1 and A2 are highly correlated. Although the variation of parameter A1 was less than that of A2, the values of both parameters can change significantly in response to G × E × M. Nitrogen nutrition index (NNI) calculated using organ-specific Nc is in general consistent with NNI estimated with overall shoot Nc, indicating that a simple organ-specific Nc dilution curve may be used for wheat N diagnosis to assist N management. However, the significant differences in organ-specific Nc dilution curves across G × E × M conditions imply potential errors in Nc and crop N demand estimated using a general Nc dilution curve in crop models, highlighting a clear need for improvement in Nc calculations in such models. Our results provide new insights into how to improve modeling of crop nitrogen-biomass relations and N management practices under G × E × M.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call