Abstract
The interaction of a general plane P wave and an elastic cylindrical inclusion of infinite length partially debonded from its surrounding viscoelastic matrix of infinite extension is investigated. The debonded region is modeled as an arc-shaped interface crack between inclusion and matrix with non-contacting faces. With wave functions expansion and singular integral equation technique, the interaction problem is reduced to a set of simultaneous singular integral equations of crack dislocation density function. By analysis of the fundamental solution of the singular integral equation, it is found that dynamic stress field at the crack tip is oscillatory singular, which is related to the frequency of incident wave. The singular integral equations are solved numerically, and the crack open displacement and dynamic stress intensity factor are evaluated for various incident angles and frequencies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.