Abstract

Ribonucleotide reductase, a key enzyme in deoxyribonucleotide synthesis, is an important target for cancer chemotherapy. Drugs that inhibit its individual components may act synergistically to block DNA synthesis. Prior work has established that gallium inhibits the R2 subunit of ribonucleotide reductase. We show that gallium acts synergistically with the ribonucleotide reductase inhibitors gemcitabine and hydroxyurea to inhibit the proliferation of CCRF-CEM cells. In contrast, combinations of gallium with the ribonucleotide reductase inhibitors amidox, didox, or trimidox produced antagonistic effects on cell growth. Spectroscopy analysis revealed that as a result of their metal-binding properties, amidox, didox and trimidox formed complexes with gallium, thus negating potential synergistic actions. Our results have important implications in the design of clinical trials using these ribonucleotide reductase inhibitors in combination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.