Abstract
Galectins have the potential to provide a promising alternative for unveiling the complexity of embryonic stem (ES) cell self-renewal, although the mechanism by which galectins maintain ES cell self-renewal has yet to be identified. Galectin-1 increased [(3)H]-thymidine incorporation as well as cyclin expression and decreased p27(kip1) expression. Src and caveolin-1 phosphorylation was increased by galectin-1, and phospho-caveolin-1 was inhibited by PP2. In addition, inhibition of caveolin-1 by small interfering RNA and methyl-beta-cyclodextrin (Mbeta-CD) decreased galectin-1-induced cyclin expression and [(3)H]-thymidine incorporation. Galectin-1 caused Akt and mTOR phosphorylation, which is involved in cyclin expression. Galectin-1-induced phospho-Akt and -mTOR was inhibited by PP2, ERas siRNA, caveolin-1 siRNA and Mbeta-CD. Furthermore, mTOR phosphorylation was decreased by LY294002 and Akt inhibitor. Galectin-1-induced increase in cyclin expression and decrease in p27(kip1) was blocked by Akt inhibitor and rapamycin. In conclusion, galectin-1 increased DNA synthesis in mouse ES cells via Src, caveolin-1 Akt, and mTOR signaling pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.