Abstract

The Fur (ferric uptake regulator) protein is a global regulator in most prokaryotes that controls a large number of genes. Fur is a classical repressor that uses ferrous iron as co-repressor and binds to specific DNA sequences (iron boxes) as a dimer. Three different genes coding for Fur homologues have been identified in Anabaena sp. PCC 7120. FurA controls the transcription of flavodoxin, the product of the isiB gene, and is moderately autoregulated. In this work, the promoter of the furA gene was defined and the FurA protected regions in the furA and isiB promoters were identified, showing that the binding sites for Anabaena FurA contain A/T-rich sequences with a variable arrangement compared to the conventional 19-base pair Fur consensus. The influence of different factors on the interaction between FurA and the promoters was evaluated in vitro. The affinity of FurA for the DNA targets was significantly affected by the redox status of this regulator and the presence of Mn(2+). The optimal binding conditions were observed in the presence of both Mn(2+) and DTT. Those results suggest that, in addition to iron availability, FurA-DNA interaction is modulated by redox conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.