Abstract

We report on efficient bioelectrocatalysis of the redox enzyme fructose dehydrogenase (FDH) upon its interaction with the sulfonated polyaniline PMSA1 (poly(2-methoxyaniline-5-sulfonic acid)-co-aniline). This interaction has been monitored in solution and on the surface of planar and macroporous indium tin oxide (ITO) electrodes by UV–vis and cyclic voltammetric measurements. Moreover, an enhancement of the catalytic activity for fructose conversion induced by a structural change of sulfonated polyaniline PMSA1 caused by the presence of Ca2+ ions is observed. An entrapment of the Ca2+-bound polymer and enzyme inside the pores of macroporous ITO electrodes leads to a significantly increased (∼35-fold) bioelectrocatalytic signal in comparison to that of a flat ITO and allows the fabrication of highly efficient electrodes with good stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call