Abstract

AbstractIn this paper, we present a method for simulating the interaction of fluids with deformable solids. The method is designed for the use in interactive systems such as virtual surgery simulators where the real‐time interplay of liquids and surrounding tissue is important. In computer graphics, a variety of techniques have been proposed to model liquids and deformable objects at interactive rates. As important as the plausible animation of these substances is the fast and stable modeling of their interaction. The method we describe in this paper models the exchange of momentum between Lagrangian particle‐based fluid models and solids represented by polygonal meshes. To model the solid‐fluid interaction we use virtual boundary particles. They are placed on the surface of the solid objects according to Gaussian quadrature rules allowing the computation of smooth interaction potentials that yield stable simulations. We demonstrate our approach in an interactive simulation environment for fluids and deformable solids. Copyright © 2004 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.