Abstract

Sixteen analogs of N-methyl-1,2,3,6-tetrahydropyridine (MPTP) of varying degrees of flexibility have been studied as substrates of highly purified monoamine oxidases (MAO) A and B. The relative effectiveness of the various tetrahydropyridines as substrates of MAO A and B were evaluated in terms of the function turnover number/Km, as determined by initial rate measurements. The insertion of a methylene bridge between the phenyl and tetrahydropyridine moieties of MPTP to yield N-methyl-4-benzyl-1,2,3,6-tetrahydropyridine, rendering the molecule more flexible, greatly enhances reactivity with MAO B, but not with MAO A, as compared with MPTP itself, in accord with data in the literature (Youngster et al., 1989a). The ethylene-bridged MPTP analog, on the other hand, is a far better substrate of both forms of MAO than is MPTP itself. The effect of molecular flexibility on the rate of oxidation of these compounds is obscured by substituents on the aromatic ring. Branching and rigidity were detrimental to the activity as substrates of both forms of MAO. Those analogs of 1 which contain small electron-withdrawing substituents in the phenyl ring were found to be more selective for MAO B, while those substituted with bulky groups were selectively oxidized by MAO A. The substrate binding site of MAO A probably contains a lipophilic pocket larger than that found in a similar site in MAO B.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.