Abstract

Plant flavonoids are emerging as potent therapeutic drugs effective against a wide range of free radical mediated diseases. Hence their interactions with cell membranes, which generally serve as targets for lipid peroxidation, are of enormous interest. Here we report in vitro studies, via absorption and fluorescence spectroscopy, on the effects of several flavonoids (namely fisetin, quercetin, chrysin, morin, and 3-hydroxyflavone, 3-HF) in goat RBC membranes. Owing to the presence of functionally relevant membrane protein components embedded in the lipid bilayer RBC ghosts provide a more realistic system for exploring drug actions in biomembranes than simpler membrane models like phosphatidylcholine liposomes used in our previous studies [e.g. B. Sengupta, A. Banerjee, P.K. Sengupta, FEBS Lett. 570 (2004) 77–81]. Here, we demonstrate that binding of the flavonoids to the RBC membranes significantly inhibits lipid peroxidation, and at the same time enhances their integrity against hypotonic lysis. Interestingly, the antioxidant and antihemolytic activities are found to be crucially dependent on the locations of the flavonoids in the membrane matrix as revealed by fluorescence studies. Furthermore, we observe that FRET (from membrane protein tryptophans to flavonoids) occurs with significant efficiency indicating that the flavonoid binding sites lie in close proximity to the tryptophan residues in the ghost membrane proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.