Abstract

The flame destabilization mechanism of hydrogen-propane-air mixture is firstly revealed. The effects of unstable flame formation on pressure rise rate and burning rate are quantified. Finally, the theoretical prediction of explosion pressure behavior is performed by considering diffusive-thermal and hydrodynamic instability. The results demonstrated that before the explosion pressure starts to climbe, as the propane fraction increases, the effective Lewis number of lean and stoichiometric mixture undergoes the transition from Leeff < 1.0 to Leeff > 1.0, the stabilizing effect of diffusive-thermal instability continues to reduce for the rich mixture. After the explosion pressure starts to climbe, the hydrogen-propane flame becomes more unstable, which is mainly attributed to enhancing hydrodynamic instability. The maximum rate of pressure rise and burning rate should be augmented by unstable flame formation, the flame instabilities must be considered in the explosion pressure evaluation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call