Abstract

Zebrafish Mate7 belongs to solute carrier protein superfamily and specifically to subfamily of multidrug and toxin extruders. It is co-orthologous to mammalian Mates, and is ubiquitously expressed in zebrafish tissues with the highest expression in kidney. It has been shown to interact with both endogenous (steroid hormones) and xenobiotic compounds (pharmaceuticals), implying a role in efflux of toxic compounds. The objective of our study was to analyse interaction of environmental contaminants with zebrafish Mate7 using a newly developed high throughput screening (HTS) Mate7 assay. A full-length zebrafish mate7 sequence was obtained from zebrafish cDNA originating from male kidney, and a stable expression of Mate7 in genetically engineered HEK293 Flp-In cells was achieved. Stable Mate7 transfectants were then used for development and optimization of a new HTS cellular uptake protocol, with DAPI and ASP + as model fluorescent substrates. The developed assay was used for identifying zebrafish Mate 7 interactors and discerning the type of interaction. A series of 89 diverse environmental contaminants, including industrial chemicals, pesticides, and pharmaceuticals, was tested and highly effective Mate7 interactors were identified in all of the aforementioned groups. Some of the inhibitors identified could be of environmental concern because they may potentially impair Mate7 efflux function, lowering the fish defence capacity against environmental contaminants, or interfering with transport of yet unidentified physiological substrates. In addition, we found significant differences between zebrafish Mate7 and mammalian Mates’ substrate preferences, a finding that should be taken into consideration when using zebrafish as a model organism in toxicokinetic studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.