Abstract

In this study, the anionic phosphate group of nucleotides was found to be the best site to bind the divalent metal cations Be2+, Mg2+, Zn2+, Cd2+, Hg2+ and Pb2+ to form the most stable complexes. Molecular orbital calculations at the semiempirical level were performed on nucleotidemetal cation complexes to report energies of complexation reactions, geometrical parameters of complexes and charge distributions on the complexes. In the discussion, complexational preferences of divalent metal cations, the charge transfer involved in the binding of the metal cations to the phosphate anion of the nucleotides and their conformational effects are included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.