Abstract

AbstractWe consider the adsorption of bovine serum albumin (BSA) on spherical polyelectrolyte brushes (SPB). The SPB consist of a solid polystyrene core of 100nm diameter onto which linear polyelectrolyte chains (poly(acrylic acid), (PAA)) are grafted. The adsorption of BSA is studied at a pH of 6.1 at different concentrations of added salt and buffer (MES). We observe strong adsorption of BSA onto the SPB despite the effect that the particles as well as the dissolved BSA are charged negatively. The adsorption of BSA is strongest at low salt concentration and decreases drastically with increasing amounts of added salt. The adsorbed protein can be washed out again by raising the ionic strength. The various driving forces for the adsorption are discussed. It is demonstrated that the main driving force is located in the electrostatic interaction of the protein with the brush layer of the particles. All data show that the SPB present a new class of carrier particles whose interaction with proteins can be tuned in a well‐defined manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call