Abstract

Properties of ferritic Fe-based alloys are highly sensitive to the carbon content dissolved in the matrix because interstitial carbon is known to strongly interact with lattice point defects and dislocations. As a result, the accumulation of radiation defects and its impact on the change of mechanical properties is also affected by the presence of dissolved interstitial carbon. This work contributes to an understanding of how interstitial carbon atoms influence the properties of small dislocation loops, which form directly in collision cascades upon neutron or ion irradiation and are ‘invisible’ to (i.e. undetectable by) standard experimental techniques applied to reveal nano-structural damage in metals. We have carried out MD simulations to investigate how the trapping of 1/2〈111〉 dislocation loops at thermally stable carbon–vacancy complexes, known to form under irradiation, affects the interaction of these dislocation loops with dislocations in bcc Fe. We have considered loops of size 1 and 3.5 nm, which represent experimentally invisible and visible defects, respectively. The obtained results point at the strong suppression of the drag of carbon-decorated loops by dislocations. In the case of direct interaction between dislocation and carbon-decorated loops, invisible loops are found to act as obstacles whose strength is at least twice as high compared to that of undecorated ones. Additional strengthening due to the carbon decoration on the visible loops was also regularly registered. The reasons for the additional strengthening have been rationalized and discussed. It is demonstrated that carbon decoration/segregation at dislocation loops affects not only accumulation of radiation damage under prolonged irradiation but also alters the post-irradiation plastic deformation mechanisms. For the first time, we provide evidence that undetectable dislocation loops decorated by carbon do contribute to the radiation hardening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.