Abstract

In this article, we have examined the direct spectroscopic and microscopic evidence of efficient quantum dots-α-chymotrypsin (ChT) interaction. The intrinsic fluorescence of digestive enzyme is reduced in the presence of quantum dots through ground-state complex formation. Based on the fluorescence data, quenching rate constant, binding constant, and number of binding sites are calculated under optimized experimental conditions. Interestingly, fluorescence quenching method clearly illustrated the size dependent interaction of MPA-CdTe quantum dots. Conformational change of ChT was traced using synchronous fluorescence measurements, circular dichroism and FTIR spectroscopic methods. Furthermore, the AFM results revealed that the individual enzyme molecule dimensions were changed after interacting with quantum dot. Consequently, this result could be helpful for constructing safe and effective utilisation of QDs in biological applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.