Abstract

The results of experimental study on detonation interaction with the regions of low reactivity, generated by the injection of an inert gas into reactive mixture, are reported. A square cross-section 60×60 mm, 3.6 m long detonation channel was used. The experiments were done for stoichiometric H2−O2 mixture at 0.3 bar and 0.5 bar initial pressure and room temperature. The inert gas (Ar, He, N2 or CO2) was injected from 0.523 dm3 container into the main channel 1 s before ignition. The size of the inert zone was controlled by inert initial pressure. The behavior of detonation was studied using direct streak photography and pressure transducers. The study has shown that at low pressure of Ar, N2 and CO2 injection only a slight decrease of detonation velocity occurs. At higher injection pressures complete damping of detonation and flame extinguishment occur, followed by flame reigniton and DDT outside the inert zone. For low He injection pressures an increase in detonation velocity was recorded. For higher injection pressures, detonation damping occurred, followed by DDT process. The results have shown that CO2 has the strongest effect on damping 2H2+O2 detonation, with N2 and Ar in the next places, and He very far behind. The effectiveness of inert gas in detonation damping was found proportional to its molecular weight and reciprocal to its specific heat ratio. The numerical simulations of detonation propagation through inert gas zone were also performed using the one- dimensional Detonation Lagrangean code with simple energy release model. The results of simulations are in good qualitative agreement with experimental tendencies. In particular, the model has shown that the re-initiation of detonation is enhanced by smooth concentration gradients at inert/reactive interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.