Abstract

Conformational changes of the cyclic (Lo) peptide Labaditin (VWTVWGTIAG) and its linear analogue (L1) promoted by presence of anionic sodium dodecyl sulfate (SDS) and zwitterionic L-α-Lysophosphatidylcholine (LPC) micelles were investigated. Results from λmax blue-shift of tryptophan fluorescence emission combined with Stern–Volmer constants values and molecular dynamics (MD) simulations indicated that L1 interacts with SDS micelles to a higher extent than does Lo. Further, the MD simulation demonstrated that both Lo and L1 interact similarly with LPC micelles, being preferentially located at the micelle/water interface. The peptide–micelle interaction elicits conformational changes in the peptides. Lo undergoes limited modifications and presents unordered structure in both LPC and SDS micelles. On the other hand, L1 displays a random-coil structure in aqueous medium, pH 7.0, and it acquires a β-structure upon interaction with SDS and LPC, albeit with structural differences in each medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.