Abstract

`Seyval blanc' grapevines (Vitis spp.) were cluster thinned 7 days after full bloom to 20, 40, and 80 clusters per vine to create light, moderate, and heavy crop levels. Vines were also shoot positioned at veraison to create exposed, partially shaded, and densely shaded cluster microclimates to examine the interactions between crop level and light exposure on fruit composition during stage III of berry development. Clusters were harvested using one of two criteria: on the same date or at similar soluble solids concentrations. Cluster mass and berries per cluster decreased with increasing crop level regardless of harvesting criterion. When harvested on the same date, soluble solids concentration, pH and malic acid concentration of juice decreased with increasing crop level. When harvested at similar soluble solids concentrations, increasing crop level delayed harvest and reduced titratable acidity (TA), tartaric acid, and malic acid. As cluster light exposure increased, soluble solids and pH increased and TA and malic acid decreased when clusters were harvested on the same date. When harvested at similar soluble solids concentration, increasing light exposure advanced harvest date and pH, TA, tartaric acid, and malic acid decreased. If clusters were harvested on the same date, significant interactions were found between crop level and light exposure for soluble solids concentration and the hue angle of berries. Significant interactions were found for berry mass, pH, TA, and tartaric acid when clusters were harvested at similar soluble solids. When harvested on the same date in 1995, soluble solids concentration of densely shaded clusters declined as crop level increased, whereas the soluble solids of exposed and partially shaded clusters declined as cluster number increased from 20 to 40 clusters per vine but remained constant from 40 to 80 clusters. In 1995, the hue angles of exposed clusters decreased with increasing crop level, while those of partially shaded and densely shaded clusters increased. When harvested at similar soluble solids concentration, berry mass of exposed and partially shaded clusters was similar across crop levels, whereas berry mass of densely shaded clusters declined as crop levels increased. Based on contribution to treatment error, crop level influenced pH more, and TA less, than did light exposure if harvested at the same date. Conversely, crop level influenced TA more, and pH less, than did light exposure if harvest was done at similar soluble solids concentrations. Regardless of harvest criterion, crop level influenced yield components, and soluble solids concentration to a greater extent and hue angle to a lesser extent than did light exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call