Abstract

Notwithstanding the enormous benefit of crizotinib, as anti lung cancer, severe toxicity as side effects are the main problem for this drug. In this research, the interaction of crizotinib over NH2 agent with C60 fullerene, boron-doped fullerene (C59B), and carboxylated fullerenes (C60COOH) using density functional theory at B3LYP/6-311G(d) theoretical level in the gaseous phase and the water solvent were evaluated. Comparison of the drug-fullerenes complex in terms of structure, energy, type of interaction was performed through optimization, frequency, natural bond orbital, and atoms in molecules calculations. The results showed that the interaction of the drug with fullerenes due to the positive interaction energy and the unstable complexation could not be proper interaction between the drug and the nanoparticle. Binding between crizotinib and C59B is covalent, and the drug absorption is chemical. The interaction between crizotinib with C60COOH has been recognized as appropriate due to some properties such as higher solubility in water, relative stability, hydrogen bonding, and physical absorption of the drug. The result of this research can be counted as a promising strategy to reduce the toxicity and develop the anti lung cancer activity of crizotinib.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call