Abstract
ABSTRACTThe molecular electric properties and energy of the complexes formed between graphene models of different areas with chrysene, 20 dibenzo[a,h]anthracene and dibenzo[a,h]pyrene were investigated at the density functional theory (DFT) level. Three different sizes (in Å) of graphene models were analyzed: 10 × 10, 15 × 15 and 20 × 20. DFT calculations were performed with the software Materials Studio 5.5, using the functionals HCTH and PBE with Grimme's dispersion correction (PBE-D), within the generalized gradient approximation GGA and numerical DNP basis set. According to results, the PBE-D functional allows a good description of structure, energy and electrical properties of studied systems. In contrast, the HCTH functional poorly reproduced the energy and structures, whereas it allows the description of the complexes through the interaction electric properties. The close relationship between the interaction energy with the interaction polarizability suggests a high contribution of the London dispersion forces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.