Abstract
Chlorhexidine (CHX) digluconate exerts plaque inhibitory efficacy in the natural dentition environment due to a superior degree of persistence at the tooth surface. The purpose of the present study was to assess the interaction of CHX with titanium surfaces to estimate its antiplaque potential in the peri-implant environment. Saliva-coated machined smooth (S) and sand-blasted acid-etched rough (R) titanium disks were soaked in either 0.1% or 0.2% CHX solution. After 24 hours, CHX amounts that were adsorbed, washed out, and desorbed from the titanium surfaces were determined spectrophotometrically at 230 nm. The antibacterial activity of CHX-treated titanium disks was assessed by measuring bacterial inhibition zones on Streptococcus mutans lawns. Titanium disks adsorbed 3% to 8% of the available CHX, which was significantly higher with 0.2% CHX (P<0.001) than with 0.1% CHX and two-fold higher on the R titanium disks compared to S titanium surface (P<0.001). After rinsing with water, 2.2% of the adsorbed CHX was washed out. Over 24 hours, S- and R-type disks released 1.1% and 0.6% of the adsorbed agent, respectively. Larger bacterial inhibition zones were obtained with 0.2% CHX and in R disks compared to S disks. CHX displayed persistence at the titanium surface. The adsorption level and bacterial growth inhibition were affected by CHX concentration and titanium surface characteristics, with higher levels of adsorption and antibacterial activity with 0.2% CHX and rough titanium surface. The slow CHX release rate suggests persistence of this agent at the titanium-pellicle surface, which can provide a long-term antiplaque effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.