Abstract

The interaction of cationic surfactant cetylpyridinium chloride, CPC, with giant lipid vesicles prepared from 1-palmitoyl-2-oleoylphosphatidylcholine, POPC, was examined at various concentrations of the lipid component. The lipid concentration was determined by a spectrophotometric method. The potentiometric method based on surfactant-selective electrode was used for the determination of surfactant concentration in the external water solution. From these results, moles of surfactant incorporated in the membrane per mole of lipid (parameter beta) and two kinds of partition coefficients were calculated. Their values were found to be considerably larger than the available literature data. A three stage process of surfactant-induced solubilization of lipid vesicles was observed. First, stable mixed bilayers form, which become saturated with CPC at a value beta(sat) larger than 0.8, which then gradually disintegrate. Just prior to the breakdown of the vesicular structure, formation of ellipsoidal vesicles was observed by optical microscopy. This phenomenon was attributed to the cooperative incorporation of surfactant into the bilayer. Fluorescence measurements have shown that the second stage in the solubilization process of POPC by the C16 chain-length surfactant does not involve mixed micelles. These are formed only in the third stage, which is the complete solubilization of POPC bilayers. The corresponding critical micellization concentration decreases with increasing concentration of the lipid component.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.